Proposal for an Experiment to Search for Light Dark Matter at the SPS

> S.N. Gninenko INR Moscow

SPSC Open Session CERN, January 14, 2014.

Proposal for an Experiment to Search for Light Dark Matter at the SPS

S. Andreas^{*a,b*}, S.V. Donskov^{*c*}, P. Crivelli^{*d*}, A. Gardikiotis^{*e*}, S.N. Gninenko^{*f*}, N.A. Golubev^{*f*}, F.F. Guber^{*f*}, A.P. Ivashkin^{*f*}, M.M. Kirsanov^{*f*}, N.V. Krasnikov^{*f*}, V.A. Matveev^{*f,g*}, Yu.V. Mikhailov^{*c*}, Yu.V. Musienko^{*e*}, V.A. Polyakov^{*c*}, A. Ringwald^{*a*}, A. Rubbia^{*d*}, V.D. Samoylenko^{*c*}, Y.K. Semertzidis^{*h*}, K. Zioutas^{*e*}

^aDeutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Notkestrasse 85, Germany

^c State Research Center of the Russian Federation, Institute for High Energy Physics, 142281 Protvino, Russia

^dETH Zurich, Institute for Particle Physics, CH-8093 Zurich, Switzerland

^ePhysics Department, University of Patras, Patras, Greece

- ^fInstitute for Nuclear Research, Moscow 117312, Russia
- ^gJoint Institute for Nuclear Research, 141980 Dubna, Russia
- ^hCenter for Axion and Precision Physics, IBS, Physics Dept., KAIST, Daejeon, Republic of Korea

CERN-SPSC-2013-034 / SPSC-P-348 06/12/2013

December 6, 2013

^bInstitut d'Astrophysique de Paris IAP, 75014 Paris, France

- New physics at sub-GeV scale: SM portals to dark sectors
- Search for visible and invisible decays of dark photons
 - setup
 - background
 - expected sensitivity
- Schedule
- Summary

Dark matter portals to SM

- The question of Dark Matter (DM): What makes up most of the Universe's mass? is still open
- LHC Phase I: no DM candidates so far. Expectations for further searches at Phase II.
- Can one expect a hint from high intensity experiments at sub-GeV scale?
- Models: dark sectors of $SU(3)_C \times SU(2)_L \times U(1)_Y$ singlet fields, coupled to SM by gravity, and possibly by other very weak forces. Search for dark forces is an additional way to detect DM.
- SM allowed portals to DS: Higgs, RH neutrino couplings, kinetic mixing between $U(1)_{\rm Y}\,$ and new $U(1)_{\rm x}\,$

- extra U`(1), new gauge boson A`(dark or hidden photon,...)
- $\Delta L = \epsilon F \mu A_{\mu\nu}$ kinetic mixing
- γ -A` mixing, ϵ strength of coupling to SM
- A` could be light: e.g. M $_{A^{\times}} \sim \epsilon ~^{1/2} M_Z$
- new phenomena: γ-A`oscillations, LSW effect, A`decays,...
- A`decay modes: e+e-, μ+μ-, hadrons,.. or A`-> DM particles, i.e. A`-> invisible decays

Large literature, >100 papers /few last years, many new theoretical and experimental results

low-mass (< MeV) A' parameter space

+ M. Betz et al., First results of the CERN Resonant WISP search (CROWS) arXiv:1310.8098

High mass (> MeV) A` parameter space

MeV A` production and decay

- e Z->e Z A`cross section $\sigma_{A^{\uparrow}} \sim \epsilon^2 (m_e/M_{A^{\uparrow}})^2 \sigma_{\gamma}$; Bjorken'09, Andreas'12
- decay rate $\Gamma(A^- \rightarrow e+e-) \sim \alpha \epsilon^2 M_{A^-}/3$ is dominant for $M_{A^-} < 2 m_{\mu}$
- sensitivity $\sim \epsilon^4$ for long-lived A`, typical for beam dump searches

For $10^{-5} < \epsilon < 10^{-3}$, $M_{A^{3}} < \sim 100 \text{ MeV}$

- very short-lived A`: $10^{-14} < \tau_{A^{\times}} < 10^{-10} s$
- very rare events: $\sigma_{A^{-}}/\sigma_{\gamma} < 10^{-13}-10^{-9}$
- A`energy boost to displace decay vertex, $\epsilon \sim 10^{-4}$, $M_{A^{\sim}} \sim 50$ MeV, $E_{A^{\sim}} \sim 100$ GeV, $L_d \sim 1$ m
- background suppression

Setup

- HCAL
- S1,S2 fiber-tracker

SPS e- beams

- H4, I_{max}~ 50 GeV e-
- 10¹² pot per SPS spill,
- ~ 5x10⁶ e- per spill
- duty cycle is 0.25
- ~10¹² e- / month additional tunning by a factor 2–3 ?
- beam spot ~ cm²
- beam purity < 1 %

Search for A`->e+e- in a LSW experiment

Specially designed ECAL

ECAL1 "bubble chamber"

W-Sc sandwich + fiber readout

- compact, hermetic, dense, fast
- rad. hard, side SiPM readout
- lateral and longitudinal segmentation
- elementary cell V ~ $R^2_M x$ few X_0
- good energy, space resolution
- e/π rejection < 10^{-3}

Summary of background sources for A`-> e+e-

Source	Expected level	Comment
Beam contamination		
$-\pi$, μ reactions, e.g. $\pi A \rightarrow \pi^0 n + X$,	< 10 ⁻¹²	Impurity < 1% Leading n cross
decays, e-n pairs,	< 10 10	Sect. ISK Udla
Detector		
 - e,γ punchthrough, - ECAL thickness, dead zones, leaks 	< 10 ⁻¹³	Full upstream coverage
Physical		
hadron electroproduction: - eA->neA*, n -> ECAL2, - eA-> e+ π +X, π ->e ν	< 10 ⁻¹³	
Total	< 10 ⁻¹²	

Expected limits on A`-> e+e- decays vs accumulated N_{e-} (background free case)

"β decay" analogy

Figure 9.1 The continuous electron distribution from the β decay of ²¹⁰E, cause called RaE in the literature).

Pauli, 1931 ? = invisible ν

Massive HCAL to enhance longitudinal hermeticity

Single module of the hadronic calorimeter:

- Pb-Sc sandwich + fiber readout
- 20x20 cm² x (16mm Pb + 4mm Sc) x 60 layers
- hermetic at $\sim 6 \lambda$
- uniform, no cracks, holes
- good energy resolution

Full HCAL : 2x2x3 modules, ~ 7 tons

17/24

HCAL hermeticity for 3 consequtive modules

Summary of background sources for A`-> invisible

Source	Expected level	Comment
Beam contamination		
 -π, p, μ reactions and punchthroughs, - e- low energy tail due to 	< 10 ⁻¹³ -10 ⁻¹² ?	Impurity < 1% SR photon tag
bremss., π , μ decays in flight,		
Detector		
ECAL+HCAL energy resolution, hermeticity: holes, dead materials, cracks	< 10 ⁻¹³	Full upstream coverage
Physical		
-hadron electroproduction, e.g. eA->neA*, n punchthrough;	< 10 ⁻¹³	~10 mb x nonherm. WI σ estimated.
- WI process: e Z->e Z $\nu \nu$	< 10-13	first observation?
Total	< 10 ⁻¹² + ?	

Additional tag of electrons with SR photons

- e- tag enhancement with SR γ
- B field ~ 0.1-1T
- $(\hbar\omega)_v^c \sim E^2 B, n_v/m \sim 6 B(T)$
- cut $\vec{E}_v > 0.1 (\hbar \omega)_v^c \sim 100 \text{ keV}$
- LYSO crystal, good resolution for > \sim 50 keV y
- suitable for vacuum

Expected limits on A^{->} invisible decays vs accumulated N_{e-} (background free case)

S.N. Gninenko(INR) – SPSC Open Session – CERN, January 14, 2014

- Test period of ~one month in 2014 2015 with e, π , μ beams.
 - refurbishing of existing detectors
 - first probe of the background level
 - first search for A^- invisible
 - full coverage of the $(g-2)_{\mu}$ favored region
 - first limit on A`-> e+e- decays
 - design and fabrication of the ECAL and HCAL.
- Tests and Measurements period of few months in 2015 2017
 - full deflector installation and commisioning
 - tests of the ECAL/HCAL performance with e, $\pi,\,\mu$ beams.
 - measurements of background with $\pi,\,\mu$ beams.
 - search for A`-> e+e- , $n_e \sim 10^{12}$ e-, or more
 - search for A`-> invisible, $n_e \sim 10^{12}$ e-, or more

Summary

• The models of dark forces-interactions between the SM and DM- are attractive from both theoretical (motivated, simple, predictive,...) and experimental (indirect detection of DM, clear signature,...) view points.

- We propose experiment to cover the still unexplored area of the parameter space $10^{-5} < \varepsilon < 10^{-3}$, $M_{A^{\times}} < \sim 100$ MeV for di-electon and Invisible (into dark matter particles) decays of dark mediator A`s.
- Both decay modes have extraordinary signatures: two separated e-m showers generated by a single e-, or catastrophic e- energy disappearance which have never been tested.
- The search requires using of 30–100 GeV electron beams from the CERN SPS with the total running time of several months during years 2014 2017. Additional time of ~ one month is requested for testing of the detectors performance with e, π , μ beams, and direct background measurements with π , μ .
- CERN Beam physicists participation would be a great help.