

Search for dark sector physics in missing-energy events

S.N. Gninenko INR, Moscow (for the NA64 Collaboration)

<u>Outline</u>

- Introduction
- Searches with e, $\mu,~\pi,\,K,~p$ beams
- Summary

Universidad Tecnica Federico Santa Maria (UTFSM), Valparaiso, Chile S. Kuleshov, W. K. Brooks, H. Hakobyan, S. Kovalenko, G. Vasquez Arenas, P. Ulloa

Rheinische Friedrich-Wilhelms- Universität Bonn, Germany M. Ball, M. Hösgen, B. Ketzer

Institute for High Energy Physics, Protvino, Russia

S.V. Donskov, V.A. Kachanov, Yu.V. Mikhailov, V.A. Poliakov, V.D. Samoylenko, A.P. Filin.

Joint Institute for Nuclear Research (JINR), Dubna, Russia G.D. Kekelidze, V.Yu. Karjavine, V.A. Kramarenko, V. Lysan, V.A. Matveev, V.V. Myalkovskiy, D.V. Peshekhonov, V.D. Peshekhonov, A.A. Savenkov, I.A. Zhukov

P.N. Lebedev Physical Institute of the RAS (LPI), Moscow, Russia V.O. Tikhomirov, K. Zhukov

Institute for Nuclear Research of the RAS (INR), Moscow, Russia A.V. Dermenev, S.N. Gninenko, A.E. Karneyeu, M.M. Kirsanov, N.V. Krasnikov, L.V. Kravchuk, O. Petukhov, I.I. Tkachov, D.A. Tlisov, A.N. Toropin

Tomsk Polytechnic University (TPU), Tomsk, Russia V.E. Burtsev, R.R. Dusaev, V.E. Lyubovitsky, A.Yu. Trifonov, B.I. Vasilishin

ETH Zurich, Institute for Particle Physics, Zurich, Switzerland D. Banerjee, D.A. Cooke, P. Crivelli, B. Radics, A. Rubbia

NA64 approach to search for new physics

The NA64 is a new fixed-target experiment aiming to search for dark photon A⁻->invisible decays at the CERN SPS with a new approach: the active beam dump combined with missing energy technique.

Beam dump: <u>Complementary to each other</u>

Sensitivity ~IUI⁴ e.g. SHIP, A. Golutvin talk

Goal of the talk: to show that this approach allows a sensitive probe of "light new physics" (dark sector physics, new symmetries, new WI sub-GeV particles coupled to e, μ , q's) by using e, μ , π , K, and p beams from existing facilities at CERN.

S.N. Gninenko – Search for dark sector physics – PBC kickoff workshop, CERN, Sept 6–7, 2016

NA64 approach:

e⁻ beam

Search for A⁻> invisible and A⁻>e+edecays of dark photons

Motivation

M. Shaposhnikov talk

 Dark Matter (DM) puzzle: What makes up most of the Universe's mass?

- LHC Run I: no DM candidates so far.
 LHC Run II: focus on searching for "heavy" new physics.
- Various models for DM motivate "light" new physics that could be observed in lower energy experiments.

One possibility is dark sector of SM singlet fields, coupled to ordinary matter by gravity, and possibly by other very weak forces. Searches for such dark forces and their mediators provide an additional way to solve the DM problem.

The A

Okun, Holdom' 86 ..

- extra (broken) U(1)´, new massive boson A´ (dark photon)
- $\Delta L = \epsilon F \mu A'_{\mu\nu}$ kinetic γ -A' mixing, ϵ coupling strength
- ε ~10⁻⁸ -10⁻³
- A´ could be light: e.g. M $_{A^{'}} \sim \epsilon^{1/2} M_{Z}$
- new phenomena: γ -A´oscillations, LSW effect,... or A´decays: i) A´ \rightarrow e⁺e⁻, $\mu^+\mu^-$, hadrons,...
- ii) A['] \rightarrow invisible if M_{A'} > M_{DM} and α_{DM} >> ϵ .

Can explain $(g-2)_{\mu}$, astrophys. observations, ...(M. Pospelov talk)

Growing activities of high intensity/sensitivity experiments at sub-GeV scale, e.g. JLab, SLAC, INFN,.... Large literature, many theoretical and experimental results. e.g. Jaeckel, Ringwald review.

Direct Search for A´->invisible decays at CERN SPS

7.

Main components :

- clean, mono-energ. 100 GeV e- beam
- e- tagging system: MM/GEM/Straw tracker + SRD (BGO, LYSO; Pb-SC)
- 4 π fully hermetic ECAL+ HCAL
 S.N. Gninenko Search for dark sector physics PBC kickoff workshop, CERN, Sept 6–7, 2016

Signature:

• in: 100 GeV e- track

• Sensitivity ~ ϵ^2

• out: < 50 GeV e-m shower in ECAL

no energy in the Veto and HCAL

Summary of background sources for A'-> invisible

8.

Source	Expected level	Comment	
Beam contamination			
$-\pi$, p, μ reactions and punchthroughs,	< 10 ⁻¹³ -10 ⁻¹²	Impurity < 1% high precision MM	
bremss., π , μ -decays in flight	< 10 ⁻¹²	SR photon tag	
Detector			
ECAL+HCAL energy resolution, transverse hermeticity, holes, dead material, cracks	<10 ⁻¹³	Full upstream coverage	
Physical			
- hadron electroproduction, e.g. $e^{-}A^{+} + n,\pi,\rho,J/\psi^{-}$	< 10 ⁻¹³	HERA ep-data	
- n punchthrough, μ inefficiency	1012	(HT Collaboration)	
- WI process: e ⁻ Z->e ⁻ Z _{VV}	< 10-13	WI σ estimated.	
Total	< 10 ⁻¹²		

NA64, July 2016

Thanks to CERN: two MBPL, SR vessel, beam tunning, E18 TUM, Munich (I.Konorov , D. Levit) for DAQ

A' signal in the $(E_{HCAL}; E_{ECAL})$ plane

10.

Search for the A´->e+e⁻ decay

Search for a new $L_{\mu}-L_{\tau}$ gauge boson

(see M. Pospelov talk)

New leptonic Z' (or Z_{μ}) from gauged $L_{\mu}-L_{\tau}$

- Class of U(1)´models: in SM it's possible to gauge one of L_e-L_μ , L_e-L_τ , $L_\mu-L_\tau$ LN differences. No anomaly.
- Extra (broken) U(1)^{\prime}, new massive boson Z^{\prime} coupled predominantly to μ and τ through the L_{μ} L_{τ} current (leptonic dark photon)
- M $_{Z'}$ could be in sub-GeV range $Z' \rightarrow \mu^+\mu^-$ or $Z' \rightarrow vv$ if M $_{Z'} < 2 m_{\mu}$
- Impact on: v-physics, explanation of $(g-2)_{\mu}$

Strong motivation for a sensitive search for Z^{$->\nu\nu$}, $\mu^+\mu^-$ in a near future experiment by using (unique) high intensity muon beam at CERN.

The upgraded muon beam at the SPS

N. Doble, L. Gatignon *, G. von Holtey, F. Novoskoltsev ¹ CERN, SL Duvision, CH-1211 Geneva 23, Switzerland

S.N. Gninenko - Search for dark sector physics - PBC kickoff workshop, CERN, Sept 6-7, 2016

μ

From J.Heeck PLB'16

Zμ

14. Search for Z_u in missing energy events at CERN SPS

Main components :

- clean, mono-energ. 150 GeV μ- beam in: 150 GeV μ- track
- in μ tagging: MM/GEM tracker
- out μ tagging: GEM/Straw tracker
- 4π fully hermetic ECAL+ HCAL

Signature:

- - out: < 100 GeV μ- track
 - no energy in the ECAL, Veto, HCAL
 - Sensitivity ~ g_u^2

Expected exclusion area

Same signature for LFV $\mu \rightarrow \tau \rightarrow \mu\nu\nu$ conversion S.N. Gninenko – Search for dark sector physics – PBC kickoff workshop, CERN, Sept 6–7, 2016

π , K, p beams

Search for $\pi^{0},\eta,\eta',K_{S}, K_{L} \rightarrow \text{invisible}$ decays and light Dark Matter

17. Rare π , η , $\eta' \rightarrow I_i I_i$ decays (PDG'15) as a probe of NP

$P \rightarrow _i _j$		
Visible		
$\pi^0 \rightarrow ee$	6.46x10 ⁻⁸	
$\pi^0 \rightarrow e \mu$	< 3.8x10 ⁻¹⁰	
$\eta \rightarrow ee$	<5.6x10 ⁻⁶	
$η \rightarrow μμ$	5.8x10 ⁻⁶	
$\eta \rightarrow e\mu$	6.0x10 ⁻⁶	
η' → ee	<5.6x10 ⁻⁶	
η' → eμ	<4.7x10 ⁻⁴	
Invisible		
$\pi^0 \rightarrow \nu \nu$	<2.7 x10 ⁻⁷	
$\eta \rightarrow invis$	<1.0x10 ⁻⁴	
$\eta' \rightarrow invis$	<5x10 ⁻⁴	

Motivation for π^0, η, η' (J^P=0⁻) -> invisible

- In SM π,η -> $\nu\nu$ strongly suppressed $Br(\pi^0, \eta \rightarrow \nu \nu) \sim 10^{-10} - 10^{-11}$ if $m_{\nu} = 18 \text{ MeV}$
- ideal to test pseudoscalar WI
- final state could be sub-GeV DM
- π^0 =(u,d), η has admixture of s-quarks
- Impact on: v-Physics, cosmology.

- E949 BNL, LSND BESII, BABAR, CLEO BESIII

Rare $K^0 \rightarrow |_i|_i$, $\pi |_i|_i$ decays (PDG¹⁵) as a probe of NP^{18.}

$K^{0} \rightarrow I_{i}I_{j}$	BR	$K^{0,+} \rightarrow \pi I_i I_j$	BR	
Visible		Visible		Motivation
$K^0_S \rightarrow ee$	< 9x10 ⁻⁹	$K^0_S \rightarrow \pi^0 ee$	3.0x10 ⁻⁹	• In SM $K^0 \rightarrow vv$ suppressed
К ⁰ _S → µµ	< 9x10 ⁻⁹	$K^0_S \rightarrow \pi^0 \mu \mu$	3.0x10 ⁻⁹	$Br(K^0 \rightarrow vv) \sim 10^{-10} m_v = 18 \text{ MeV}$
$K_{0}^{0} \rightarrow ee$	9.0x10 ⁻¹²	K ⁰ _L →π ⁰ ee	< 2.8x10 ⁻¹⁰	• could occur in 2HDM, 2HDM+
$K^0_L \rightarrow \mu \mu$	6.8x10 ⁻⁹	К ⁰ _L →π ⁰ µµ	< 3.8x10 ⁻¹⁰	light scalars, mirror model,
$K^0_L \rightarrow e\mu$	< 4.7x10 ⁻¹²	К+ → πµе	< 1.3x10 ⁻¹¹	$Br(K^0 \rightarrow inv) \sim 10^{-8} - 10^{-6}$ and
		К ⁰ _L →π ⁰ µе	< 7.6x10 ⁻¹¹	not constrained by K-> πvv .
Invisible		Invisible		clean probe of NP scales
$K^0_s \rightarrow vv$	never	$K^+ \rightarrow \pi^+ \nu \nu$	1.7x10 ⁻¹⁰	above 100 TeV,
$K_{L}^{0} \rightarrow \nu \nu$	tested	$K_{L}^{0} \rightarrow \pi^{0} \nu \nu$	< 2.6x10 ⁻⁸	Complementary to K-> $\pi\nu\nu$

(NA62)

Rare kaon decays with "missing energy"

William J. Marciano and Zohreh Parsa

PRD(R)'96.

and $K_L \rightarrow \nu \bar{\nu}$ (if neutrinos have mass). Those decays would be interesting to explore, but their detection looks essentially impossible. New ingenious experimental ideas are required.

Bell-Steinberger relation (PDG'15)

(assuming no significant

undiscovered K_S, K_L decays!)

Conclusions of the MITP Workshop on T Violation and CPT Tests in Neutral-Meson Systems

K. R. Schubert^{1,2}, L. Li Gioi³, A. J. Bevan⁴ and A. Di Domenico⁵

The most sensitive tests of CPT symmetry remain the Bell-Steinberger analyses of the $K^0\overline{K}^0$ system using unitarity which connects the CP-symmetry properties of all observed K_S and K_L decay modes with the CPT- and T-sensitive overlap $\langle K_L|K_S\rangle$. These analyses started in 1970 and have reached the impressive sensitivity of $|m(\overline{K}^0) - m(K^0)| < 4 \cdot 10^{-19}$ GeV at 95% C.L. in 2012, as presented by G. D'Ambrosio at the workshop. An open question remains by how much invisible decays of neutral K mesons can influence the result. How well is unitarity tested experimentally?

$Br(K_S \rightarrow inv) \approx 10^{-5}$, $Br(K_L \rightarrow inv)\Gamma_L/\Gamma_S \approx 10^{-5}$ still can contribute to B-S NA64 can improve these limits by a few orders of magnitudes

$K_L \rightarrow$ invisible: nothing in, nothing out

Main components :

- 20-50 GeV π,K- beam
- MM/GEM tracker, ECAL-Veto target
- 4π fully hermetic ECAL+ HCAL Signature:
- in: 20–50 GeV π, K-track
- out: no energy in ECAL, Veto, HCAL

Complete disappearance of beam energy?

S.N. Gninenko – Search for dark sector physics – PBC kickoff workshop, CERN, Sept 6–7, 2016

TABLE II. Expected upper limits on the branching ratios of different decays into invisible final states calculated for the total number of 10¹² incident pions or kaons (see text for details).

20.

Expected limits on	Present limit
the branching ratio	
$Br(K_S \rightarrow invisible) \lesssim 10^{-8}$	no
$Br(K_L \rightarrow invisible) \lesssim 10^{-6}$	no
$Br(\pi^0 \rightarrow invisible) \lesssim 10^{-8}$	$< 2.7 \times 10^{-7}$ [2]
$Br(\eta \rightarrow invisible) \lesssim 10^{-7}$	$< 1.0 \times 10^{-4} [3]^{3}$
$Br(\eta' \rightarrow invisible) \lesssim 10^{-6}$	$< 5.2 \times 10^{-4} [3]^{a}$

Search for GeV DM in pA interactions (prelim.)

S.N. Gninenko – Search for dark sector physics – PBC kickoff workshop, CERN, Sept 6–7, 2016

21.

Physics prospects (http://na64.web.cern.ch)

Process	New Physics	Sensitivity
1. e ⁻ Z ->e ⁻ Z + E _{miss}		
 ◇ A´-> e+e- ◇ A´-> invisible ◇ alps ◇ milli-q 	Dark Sectors: Dark Photons and DM (g-2) _µ new particles, Charge Quantization	10 ⁻³ <ε<10 ⁻⁶ M _{A´} ~ sub-GeV e´ <10 ⁻⁵ -10 ⁻⁷
2. μ ⁻ Ζ->μ ⁻ Ζ+ Ε _{miss}		
$ arr Z_{\mu} → vv, \mu^{+}\mu^{-} arr conversion $	New gauged symmetry L_{μ} - L_{τ} and leptonic forces LFV	α _μ < 10 ⁻¹¹ -10 ⁻⁹ σ< 10 ⁻⁹ -10 ⁻⁸ /μ
3. π(K)p-> M ⁰ n + E _{miss}		
 ♦ K_L-> invisible ♦ K_S-> invisible ♦ π^{0}, η, η -> invisible 	visibleCP, CPT symmetry B-S Unitarity, new particles: NHL, $\phi\phi$, VV	
4. pA -> X+ E _{miss}		
* leptophobic X	~ GeV DM	σ<10 ⁻⁷ -10 ⁻⁸ /p

Beams and running time

Beam	Energy, GeV	Intensity per spill	Period, months	N _{tot}	Process
e⁻	~100	~106	~6 ~6	~10 ¹² ~10 ¹²	eZ->eZA´; A´->inv A´->ee
μ-	~150	~ 10 ⁶	~6	10 ¹² -10 ¹³	μΖ->μΖΖ´, Ζ´->νν μΖ->τΖ τ->μνν
π^-	~20-50	~ 10 ⁶	~6	10 ¹² -10 ¹³	πA->π ⁰ ,η,η´A π ⁰ ,η,η´-> inv
K	~20-50	~ 10 ⁶	~6	~1012	KA->K ⁰ A K _S ,K _L -> inv
р	200-400	~ 10 ⁶	~6	~1011	pA->pAZ´ Ζ´->χχ

Summary

- The conceptual idea of NA64 is to search for dark photons in missing-energy events with an active beam dump experiment. The capability of the approach has been shown in Runs 2015-16.
- The proposed NA64 research program is significantly extended by the inclusion of measurements with e, μ , π , K, and p beams aiming to search for dark sector physics, new symmetries, and new WI particles with sub-GeV masses that coupled to leptons and/or q's.
- These are experiments at high-intensity and -sensitivity frontier which can be performed at the existing facilities at CERN in the medium term future. They can deliver rich and compelling physics results, complementary to those at the LHC. In some cases a parameter space in physics beyond the SM, that is inaccessible to direct searches at the LHC or at future colliders can be covered.

Signature for eZ->eZA´; A´-> invisible

GEANT4+code for A^{\prime} emission in the process of e-m shower development $\sigma(e^{-}Z->e^{-}ZA^{\prime})$ from Bjorken et al. 09

