Search for a new X boson and Dark Photons in NA64 at the CERN SPS.

DSU-2018
June 2018 Annecy
Outline

• Motivation
• The NA64 experiment
• Runs NA64
• Simulation of the Dark Matter production
• Analysis of the data
• Results on A’ in invisible mode
• Plans for the invisible mode
• Visible mode: X-boson, motivation
• Event selection, efficiency, backgrounds
• Results on the X-boson search
• Conclusion, near and more distant plans of NA64
Vector portal to Dark Sector

Okun, Holdom’ 86 .. \(\alpha_D = e_D^2/4\pi \)

- new massive boson \(A' \) (dark photon) which has kinetic mixing with ordinary photon: \(\Delta L = \varepsilon/2 \, F^{\mu \nu} A'_{\mu \nu} \)

- Production: \(A' \) - bremsstrahlung \(e^- Z \rightarrow e^- Z A' \), \(\sigma \sim Z^2 \varepsilon^2/m_{A'}^2 \)

- Decays:
 - Visible: \(A' \rightarrow e^+e^-, \mu^+\mu^- \), hadrons,..
 - Invisible: \(A' \rightarrow \chi\chi \) if \(m_{A'} > 2m_\chi \) assuming \(\alpha_{DM} \sim \alpha \gg \varepsilon \).
 Can explain \((g-2)_\mu\), astrophys. observations

- Cross section for \(\chi \)-DM annihilation: \(\sigma_N \sim \left[\alpha_{DM} \varepsilon^2 (m_\chi/m_{A'})^4 \right] \alpha/m_\chi^2 \)
NA64 experiment setup (invisible mode)

~50 researchers from 12 institutes
Proposed in 2014, first test runs in 2015
NA64 experiment setup
Search for $A'\rightarrow$ invisible decays at CERN SPS

Main components:

- clean 100 GeV e- beam
- e- tagging system: tracker+SRD
- fully hermetic ECAL+ HCAL

Background:

- μ, π, K decays in flight
- Tail < 50 GeV in the e- beam
- Energy leak from ECAL+HCAL

Signature:

- in: 100 GeV e- track
- out: $E_{ECAL} < E_0$ shower in ECAL
- no energy in Veto and HCAL

SES < 10^{-11}/EOT
Summary of the NA64 runs

- **First run 12.10-09.11 2016, 4 w, invisible mode configuration**
 - 23 October → start data taking;
 - Subrun1 EOT ~ 2x10^{10}, S_0 rate 1.5÷2.2x10^6;
 - Subrun2 EOT ~ 1.5x10^{10}, S_0 rate 2.4÷3.2x10^6;
 - Subrun3 EOT ~ 1.0x10^{10}, S_0 rate 4.6÷5.0x10^6; ~0.6 day
 - **Total number ~ 4.5 x10^{10} eot**

- **Second run 09.09-01.10 2017, from 22.09 visible mode configuration**
 - Subrun 1 WCAL 40X0 EOT ~ 2.4x10^{10}, S_0 rate ~3x10^6;
 - Subrun 2 WCAL 30X0 EOT ~ 3x10^{10}, S_0 rate 4-5x10^6;
 - **Total EOT ~ 5.4x10^{10}**
Simulation of $eZ\rightarrow eZA'$; $A'\rightarrow$ invisible @ BG

GEANT4 + code for A' emission in the process of e-m shower development. $\sigma(e^-Z\rightarrow e^-ZA')$ from Bjorken et al. 2009

SM events:
$E_{\text{ECAL}} + E_{\text{HCAL}} \sim E_0$

M$A' = 50$ MeV
$\varepsilon \leq 10^{-1}$

$E_{\text{ECAL}} < E_0$; $E_{\text{HCAL}} = 0$

Gninenko, Kirsanov, Krasnikov, Kirpichnikov
PRD(2016)
Simulation of eZ→eZA

• The signal process is simulated using simplified Weizsaecker – Williams (WW) approximation (Bjorken et al., 2009)
• More exact calculations that use the full matrix element were performed recently (2016, 2017) (arXiv:1712.05706 [hep-ph], accepted in Phys. Lett. B)
• We started to use these calculations this year
• They are implemented as K-factors to the total cross section. The latter can be decreased by as much as factor 15 w.r.t. the simplified WW approximation at $M_A \sim 1$ GeV
• The differential cross section (essentially the distribution of the energy fraction transferred to A’) from WW is used. The difference is small because both WW and exact are strongly peaked near 1. The A’ spectrum is determined mainly by the EM shower development
K-factors to $eZ \rightarrow eZA$
Reconstruction: key moments

- Synchrotron Radiation detectors (SRD) made as lead – scintillator sandwiches suppress pions and other particles heavier than electrons that are present in the beam by a factor of 10^{-5}

- The shower profile in ECAL is compared to the profile of true electrons in order to further suppress wrong particles.

- Micromegas track detectors are used to reconstruct the momentum of electron before the ECAL in order to suppress small fraction of soft electrons from interactions on beam line elements.
Dimuon production as a reference process

- There is an excellent reference process: gamma to muons conversion. It is rather rare and has many similarities with our signal.
- Several 10^4 dimuon pairs with both muons reaching all HCAL modules are registered in the 2016 runs.
- The process is available in GEANT4, off by default.
- We bias the cross section in GEANT4 by a factor of 200 in order to have good statistics with reasonable CPU time.
- Good agreement DATA - MC.
Dimuon reconstruction

Dimuons selection: $E_{\text{ECAL}} < 60$ GeV
$2.5 < E_{\text{HCAL1}} < 6.35$
$2 < E_{\text{HCAL3}} < 6.35$

Left plot: number of dimuons in DATA ~ 0.92 of MC prediction -> efficiency correction
Background

Graph showing distributions of E_{HCAL} and E_{ECAL} in GeV with a color scale ranging from 1 to 10^3. The data points are scattered across the graph, indicating a distribution that may be relevant to the search for a new X-boson and Dark Photons in the NA64 experiment.
Background

- As mentioned above, the sources of background are decays in flight and various impurities of the beam (softer electrons etc.)
- The BG from decays was estimated by biasing the life times in GEANT4
- The second BG is higher and difficult to simulate. We estimated it using extrapolation from the “side bin”, i.e. from what we see beside our “signal box” preliminarily defined as $E_{\text{ECAL}} < 50$ GeV
Background: example of extrapolation

Total predicted background ~ 0.17
Analysis: efficiency corrections and uncertainties

<table>
<thead>
<tr>
<th>Efficiency type</th>
<th>Method</th>
<th>Efficiency</th>
<th>uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger and SRD selection, DAQ</td>
<td>Dimuons analysis</td>
<td>0.91</td>
<td>10%</td>
</tr>
<tr>
<td>VETO cut</td>
<td>Comparison MC - data in calib. runs</td>
<td>1</td>
<td>5%</td>
</tr>
<tr>
<td>HCAL cut</td>
<td>Comparison MC - data in calib. runs</td>
<td>0.99</td>
<td>5%</td>
</tr>
</tbody>
</table>

Veto: cut at 0.01 GeV

HCAL0: cut at 1 GeV
Analysis

• Data collected in the autumn 2016 run are divided in 3 bins: low, medium and high intensity
• For each bin the background, efficiency corrections and their uncertainties are estimated
• The expected sensitivity was calculated with ProfileLikelihood method
• The limits are calculated with CL_S method
The optimization confirmed the preliminary choice of the E_{ECAL} cut: 50 GeV
Results

Future plans

• More data in invisible mode are collected in 2017 and 2018
• The analysis of these data is now been performed
• New results are expected this and next year
Search for a new X-boson decaying to e^+e^-
ATOMKI $^8\text{Be}^*$ anomaly: a new 17 MeV gauge boson?

$^7\text{Li}(p,\gamma)^8\text{Be}$, $M_X = 17$ MeV

Feng et al, 2016

X cannot be A due to constraints from $\pi^0 \rightarrow X\gamma$ decay:

$$\Gamma(\pi^0 \rightarrow X\gamma) \sim (\epsilon_u q_u - \epsilon_d q_d)^2 \sim 0$$

if $2\epsilon_u = -\epsilon_d$ -> protophobic X
Search for the $X(A^\prime)$:\rightarrowe$^+$e$^-$ decays

σ_x/σ_γ~10^{-10}, τ_x~10^{-13} s

- X decays outside WCAL dump
- **Signature:** two separated showers from a single e$^-$
 - $E_{WC} < E_0$, and $E_0 = E_{WC} + E_{EC}$
 - $\theta_{e^+e^-}$ too small to be resolved
 - **background**
 - Beam hadrons
 - SRD e$^-$-tagging is a key point

S. Andreas et al., arXiv: 1312.3309
S.G., PRD(2014)
2017 run e$^-$, 100 GeV
Event selection: criteria

- SRD tag
- $E_{\text{WCAL}} < 70$ GeV (preliminary trigger selection $E_{\text{WCAL}} < \sim 75$ GeV)
- $E_{V2} < 0.6$ MIP (no charged particles after WCAL).
- $E_{S4} > 1.5$ MIP (two charged particles in ECAL).
 Control region for neutrals: $E_{S4} < 0.7$ MIP
- $E_{\text{WCAL}} + E_{\text{ECAL}} > 85$ GeV
- Shower profile in ECAL compatible with electron (or with two very close electrons)
- Small energy in VETO and HCAL
Checks of efficiency to signal

- Dimuons (gamma to muons conversion) are used also in this configuration: efficiency corrections
- Electron calibration runs are used to compare the distributions in the detectors used as veto: V2, VETO, HCAL
- Checking the shower profile. We cannot have a single electron in ECAL in this configuration. We selected muons from the hadron calibration runs that emit hard delta electron in ECAL. We require EECAL > 20 GeV and we select events with small activity in ECAL, VETO. All such events have χ^2 below our cut.
Main background from \(K^0_S \rightarrow \pi^0 \pi^0 \rightarrow \gamma' s \rightarrow e^+e^- \) decay chain

We used two control samples to estimate this BG: fully neutral events with and without cut on \(E_{HCAL} \).

Two methods to estimate this background:
First: sample with removed cut on \(E_{HCAL} \). Main contribution from neutrons, also \(K^0_L \) contribute
Second: sample with cut on \(E_{HCAL} \)

Method I: selection of neutral hadronic final state: \(n:K^0 \sim 10:1 \) \(\Rightarrow \) \(n_{K^0} \sim 10^2 K^0 \)

Method II: selection of e.m. neutrals (\(\gamma' \)s from \(K^0_S \) chain) \(\Rightarrow \) \(n_{K^0} \sim 1.5 \times 10^2 K^0 \)

Consistent estimates of \(K^0_S \)
Then use Geant4 MC to estimate the number of \(K^0_S \) events with conversion before S4
Final estimate of the background

<table>
<thead>
<tr>
<th>Source of background</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^+e^- pair production by punchthrough γ</td>
<td>< 0.001</td>
</tr>
<tr>
<td>$K_S^0 \rightarrow 2\pi^0; \pi^0 \rightarrow \gamma e^+e^- \text{ or } \gamma \rightarrow e^+e^-; K_S^0 \rightarrow \pi^+\pi^-$</td>
<td>0.06 ± 0.034</td>
</tr>
<tr>
<td>$\pi N \rightarrow (\geq 1)\pi^0 + n + ...; \pi^0 \rightarrow \gamma e^+e^- \text{ or } \gamma \rightarrow e^+e^-$</td>
<td>0.01 ± 0.004</td>
</tr>
<tr>
<td>π^- hard bremsstrahlung in the WCAL, $\gamma \rightarrow e^+e^-$</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>$\pi, K \rightarrow e\nu, K_{e4}$ decays</td>
<td>< 0.001</td>
</tr>
<tr>
<td>$eZ \rightarrow eZ\mu^+\mu^-; \mu^\pm \rightarrow e^\pm\nu\nu$</td>
<td>< 0.001</td>
</tr>
<tr>
<td>punchthrough π</td>
<td>< 0.003</td>
</tr>
<tr>
<td>Total</td>
<td>0.07 ± 0.035</td>
</tr>
</tbody>
</table>
Results from 2017 run, 5.4×10^{10} EOT

![Graph showing energy in WCAL and ECAL with signal box and single candidate event marked.](image)

Signal box: $E_0 = E_W + E_{ECAL}$

Observed γ's used to predict $\gamma \rightarrow e^+e^-$.
Results from Sept’2017 run, 5.4x10^{10} EOT

X is simulated as A' in invisible mode, then decayed with
$\Gamma \sim m_\epsilon^2$, $\text{Br}(X \to e^+e^-)=1$

Part of the $^8\text{Be}^*$ region (red vertical line) is excluded: $1.3 \times 10^{-4} < \epsilon_e < 4.2 \times 10^{-4}$

Region of A' with different masses decaying to e^+e^- is excluded

Further running and expected results

Some more data (less than expected) were taken in June 2018 with the visible mode configuration optimized for bigger ε. NA64 running after LHC LS2 (in 2021) is preliminarily approved.
Conclusion

• A search is performed for sub-GeV dark photons (A’) mediated production of dark matter by the NA64 experiment with 4.3*10^{10} 100 GeV electrons on target

• No evidence for such events is found. This allows to derive an upper limit on the A’ – γ mixing strength in the A’ mass range from 1 to 500 MeV and allows to exclude a vector mediator particle solution (universal or e-coupled) to the (g-2) anomaly

• More data were taken in 2017 and 2018, are being analysed

• A search is performed for a new X-boson decaying to e^+e^-

• No evidence for such particles are found. This allows to exclude part of the 8Be* preferred region and a region on the m – ε plane for similar particles with different masses

• Some more data in this configuration were taken in 2018, to be analysed

• The project of running in the muon beams together with COMPASS is being prepared, the purpose is to probe (g – 2)_μ, μ – τ conversion etc.
Backup slides

Exclusion area for $A' \rightarrow e^+e^-$ vs EOT

Old figure