

Dark sector physics search in missing energy events with the NA64 experiment

B. Radics (on behalf of the NA64 collaboration)

1

Outline

- Motivation and method of search
- The NA64 experiment
- Runs in 2016 and 2017
- Simulation of Dark Photon production
- Analysis of data
- Results
- Conclusions

Motivation

- Possible candidates for new physics: sub-GeV dark sector particles not charged under SM forces, only gravitational interaction,"portal" interactions with SM particles
- Thermal freeze-out of DM-SM could explain relic density, and put constraints on the parameter space
- May affect galactic structure formation, muon $(g-2)_{\mu}$, etc
- Parameter space is poorly tested
- Most accessible via portal interactions with SM: gauge kinetic mixing, MeV -GeV mass range, high intensity searches
- Most viable is interaction of DM with SM through a vector portal A' boson

Dark Sectors 2016 Workshop: Community Report, J.Alexander et al., arxiv: 1608.8632

Motivation

• New A' vector portal boson (dark photon) could mix kinetically with photon

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{m_{\rm A'}^2}{2} A'_{\mu} A'^{\mu} + i\bar{\chi}\gamma^{\mu}\partial_{\mu}\chi - m_{\chi}\bar{\chi}\chi - e_{\rm D}\bar{\chi}\gamma^{\mu}A'_{\mu}\chi$$

- A' corresponds to new U(1)_D gauge symmetry, $\varepsilon << 1$
- Requirement of thermal freeze-out of DM-SM annihilation through photon-A' mixing allows to derive relations between the parameters (PRD 91,094026 (2015)).
- Rate of DM annihilation into SM fermions, allows to define signal event rate, y,

$$\langle \sigma v \rangle \propto \underline{\alpha_{\rm DM} \epsilon^2 (m_\chi^4 / m_{\rm A'}^4)} \alpha / m_\chi^2 \qquad \alpha_{DM} = e_D^2 / 4\pi$$

- Decay channels: visible: e+e-, mu+mu-, hadron, ..., invisible: A' -> $\chi \chi^-$ if m_{A'} > 2m_{χ}. It is dominante if $\alpha_{\rm DM} >> \varepsilon$.
- Production: interaction of high energy electrons in an active beam dump target

NA64 collaboration

D. Banerjee,¹¹ V. Burtsev,⁹ D. Cooke,¹¹ P. Crivelli,¹¹ E. Depero,¹¹ A. V. Dermenev,⁴ S. V. Donskov,⁸ F. Dubinin,⁵ R. R. Dusaev,⁹ S. Emmenegger,¹¹ A. Fabich,³ V. N. Frolov,² A. Gardikiotis,⁷ S. N. Gninenko^{*},⁴ M. Hösgen,¹ V. A. Kachanov,⁸ A. E. Karneyeu,⁴ B. Ketzer,¹ D. V. Kirpichnikov,⁴ M. M. Kirsanov,⁴ I. V. Konorov,⁵ S. G. Kovalenko,¹⁰ V. A. Kramarenko,⁶ L. V. Kravchuk,⁴ N. V. Krasnikov,⁴ S. V. Kuleshov,¹⁰ V. E. Lyubovitskij,⁹ V. Lysan,² V. A. Matveev,² Yu. V. Mikhailov,⁸ V. V. Myalkovskiy,² V. D. Peshekhonov,² D. V. Peshekhonov,² O. Petuhov,⁴ V. A. Polyakov,⁸ B. Radics,¹¹ A. Rubbia,¹¹ V. D. Samoylenko,⁸ V. O. Tikhomirov,⁵ D. A. Tlisov,⁴ A. N. Toropin,⁴ A. Yu. Trifonov,⁹ B. Vasilishin,⁹ G. Vasquez Arenas,¹⁰ P. Ulloa,¹⁰ K. Zhukov,⁵ and K. Zioutas⁷ (The NA64 Collaboration[‡]) ¹Universität Bonn, Helmholtz-Institut für Strahlen-und Kernphysik, 53115 Bonn, Germany ²Joint Institute for Nuclear Research, 141980 Dubna, Russia ³CERN, European Organization for Nuclear Research, CH-1211 Geneva, Switzerland ⁴Institute for Nuclear Research, 117312 Moscow, Russia ⁵P.N. Lebedev Physics Institute, Moscow, Russia, 119 991 Moscow, Russia ⁶Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ⁷Physics Department, University of Patras, Patras, Greece ⁸State Scientific Center of the Russian Federation Institute for High Energy Physics of National Research Center 'Kurchatov Institute' (IHEP), 142281 Protvino, Russia

⁹Tomsk Polytechnic University, 634050 Tomsk, Russia

¹⁰ Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile

¹¹ETH Zürich, Institute for Particle Physics, CH-8093 Zürich, Switzerland

47 researchers from 11 institutes Proposed in 2014, first test beam in 2015

Method of search for A' -> invisible

- If realised by nature, any source of photons will produce all kinematically possible massive A' states with the appropriate mixing strength: e.g. kinetic mixing with bremsstrahlung photons in the reaction of high-energy electrons from a beam absorbed in an active beam dump.
- Followed by the prompt decay A' -> invisible into DM particles: $e^{Z} -> e^{Z}A'$; A'-> $\chi \chi^{-}$
- A fraction of the beam energy, f, is carried away by χ particles, penetrating the target without interactions, $E_{A'} = f E_0$
- The remaining part of the beam energy is deposited in the target: $E_e = (1-f) E_0$
- Signal signature: excess of events above background with
 - single isolated energy e-m shower with energy $E_e < E_0$
 - missing energy $E_{miss} = E_{A'} = E_0 E_e$
- Number of A' produced per electron on target (EOT):

$$n_{A'}(\epsilon, m_{A'}, E_0) = \frac{\rho N_A}{A_{Pb}} \sum_{i} n(E_0, E_e, s) \sigma^{A'}(E_e) \Delta s_i$$

Simulation of eZ->ezA'; A' -> invisible

- Geant4 and A' emission in the e-m shower development.
- Cross section from Bjorken et al. 2009.
- Sensitivity ~ ε^2 (A' production vertex) while for beam dump experiments ~ $\varepsilon^2 \alpha_D$ (+ A' decay and χ scattering off electrons in the target detector).
- For small ε mixing parameter this scheme has great advantage.

NA64 experiment setup invisible search mode

TOP VIEW

NA64 experiment setup

Key moments in reconstruction

- Synchrotron Radiation detector (SRD) made as lead scintillator sandwich used to suppress pions and other heavier then e- particles from the beam.
- The shower profile in the ECAL is compared to profile of true electrons in order to suppress wrong particles.
- Micromegas track detectors are used to reconstruct the momentum of e- before the ECAL to suppress small fraction of soft electrons from interaction in beam line elements.

Key moments in reconstruction

- Each ECAL module is 40 X_0 with a $4X_0$ preshower initial part, electron energy resolution: dE/E \sim 0.1/ $\!\sqrt{E}$
- Requiring in-time between SRDs combined with ECAL longitudinal and lateral shower information: π/e < 10⁻⁵, 95% e- ID efficency (NIM A 866 (2017) 196).
- V2 after ECAL to veto charged secondaries, and HCAL (30 λ_{int}, Fe+Sc) to veto on muons or hadronic secondaries.

Data taking in 2016

- 1st Run period: 29.06-13.07 (2w)
- 2nd Run period: 12.10-09.11 (4w)
 - Low intensity: $n_{EOT} = 2.3 \times 10^{10} (\sim 1.4 2 \times 10^{6} \text{ e-/spill})$
 - Medium intensity: $n_{EOT} = 1.1 \times 10^{10} (\sim 3-3.5 \times 10^{6} \text{ e-} / \text{spill})$
 - High intensity: $n_{EOT} = 0.9 \times 10^{10} (\sim 4.5 5 \times 10^{6} \text{ e-/spill})$
- $Tr(A')=\Pi S_i \times V1 \times PS(>E_{PS}) \times ECAL(<E_{ECAL})$

ECAL vs HCAL energy

- Region I: dimuon events
- Region II: $E_{ECAL} + E_{HCAL} = 100 \text{ GeV}$
- Region III: pile-up of e- and beam hadrons (1-20%)

Dimuon production as reference

- Rare process gamma to muon conversion (eZ->eZγ;γ->μμ), many similarities with our signal. Available in G4, off by default.
- Can be used to estimate corrections to signal reconstruction efficiency and uncertainties in A' yield calculations
- HCAL energy around 10 GeV.
- $\sim 10^4$ dimuon pairs detected in HCAL in 2016 run period.
- MC simulation: cross section have been biased in G4 by a factor of 200 to have good statistics.
- MC compared with Data.

Dimuon reconstruction

Analysis: efficiency and uncertainties

Efficiency	Value, uncertainty	sample
number of collected EOT, n_{EOT}	1 ± 0.02	e^- Data
incoming e^- selection cuts, ϵ_e	0.58 ± 0.03	e^- Data
A' yield, $\epsilon_{A'}$	$\epsilon, m_{A'}$ dependent, 10%	MC, Dimuons
ECAL selection cuts, ϵ_{ECAL}	0.93 ± 0.06	Data, Dimuons
Veto cut, ϵ_V	0.94 ± 0.03	Data, MC
HCAL selection cuts, ϵ_{HCAL}	0.98 ± 0.02	Data, MC
Total	0.50 ± 0.13	

- Values correspond to high-intensity run.
- Total efficiency varying 0.73 ± 0.12 to 0.50 ± 0.13 .
- ECAL and incoming e- selection most rate dependent.

Analysis cuts

GGI Conference, Florence Oct 2017

Backgrounds

- Leak of energy through holes, cracks in the detector
 - X-Y scan of ECAL and HCAL no significant E leak found
- Detector hermeticity: photo-nuclear reaction producing neutrons, charged hardons escaping detection in HCAL (non-herm)
 - pion beam test, Data-MC comparison, single hadron prod. prob. <10⁻⁴, non hermeticity < 10⁻¹³, overall negligible < 10
- Large transverse fluctuations from hadronic showers, long lived neutral emitted at large angles: similar to previous estimates
- Upstream interactions: requires precise knowledge of dead material in the beam line
 - SRD, V2, tracker suppression of secondaries
 - HCAL: lateral E and time spread compared with that expected from single electrons interacting in the ECAL target
 - estimation from data control regions
- Particle in-flight decays
 - SRD, ECAL energy and incoming track angle

Backgrounds

Background source	Estimated number of events, n_b
hermeticity: punch through γ 's, cracks,	< 0.001
loss of hadrons from $e^-Z \rightarrow e^- + hadrons$	< 0.001
loss of muons from $e^- Z \to e^- Z \gamma; \gamma \to \mu^+ \mu^-$	0.005 ± 0.001
$\mu \to e \nu \nu, \pi, \ K \to e \nu, K_{e3} \text{ decays}$	0.02 ± 0.004
e^- interactions in the beam line materials	0.09 ± 0.03
μ, π, K interactions in the target	0.008 ± 0.002
accidental SR tag and e^- from μ, π, K decays	< 0.001
Total n_b	0.12 ± 0.04

- Dominant contribution from upstream interactions
- 30% uncertainty also mainly due to upstream interactions
- Estimated from extrapolation of background control regions to signal region

Analysis

- Data collected from 2016 runs are divided in 3 bins: low, medium and high intensity beam.
- For each bin the background, efficiency corrections and uncertainties are estimated.
- A cut optimisation for the maximum sensitivity was performed for ECAL cut.
- The expected sensitivity was calculated with the Profile Likelihood method with RooStats, using the PL as test statistics, and taking the asymptotic approximation.

$$N_{A'} = \sum_{i=1}^{3} N_{A'}^{i} = \sum_{i=1}^{3} n_{EOT}^{i} \epsilon_{tot}^{i} n_{A'}^{i} (\epsilon, m_{A'}, \Delta E_{e})$$

- Each ith entry for each data: simulating signal events for beam conditions and reconstructing w/ selection criteria, and efficiency corrections.
- Results also cross checked with simple limit from Poisson signal model with log-normal used for systematic uncertainty terms. Results agree within %.

- Muon g-2 favoured parameter region for vector mediator model excluded.
- Phys. Rev. Letters **118**, 011802 (2017)

ullet

Results on light thermal dark matter

- LTDM models can be classified into spin and mass of DM and mediators, here only considering vector mediator.
- Assuming limits from prev. slide, constraints on DM annihilation freeze out.
- Results obtained for LSND, E137 and MiniBoone with 10²², 10¹⁹ and 10²⁰ POT.
- NA64 obtained with only $\sim 4 \times 10^{10}$ EOT. With $\sim 4 \times 1011$ EOT NA64 can cover all beam dump exclusion areas. GGI Conference, Florence Oct 2017

Conclusions

- Search is performed for sub-GeV dark photon mediated production of dark matter by NA64, using 4.3x10¹⁰ 100 GeV electrons.
- No evidence of such events found.
- Derived upper limits on A'-γ mixing strength in the mass range 1-500 MeV, allowing to exclude vector mediator model solution for the muon g-2 anomaly.
- Assuming these limits and constraints on DM ann. freeze out NA64 managed to exceed also limits on LTDM scenarios.
- NA64 continues to increase statistics in the near future and extend searches for dark matter and new physics at CERN SPS.
- Just finished our 2017 run, collecting additional 5x10¹⁰ electrons:
 - Runs finished both with invisible and visible mode, sensitivity to exclude $\varepsilon = [5x10^{-5}, 10^{-3}]$, covering light X boson (⁸Be) favoured parameter region
 - Data under evaluation