Search for dark sector physics in missing-energy events

> S.N. Gninenko INR, Moscow

- <u>Outline</u>
- Introduction
- Direct search for the A´->invisible decay
- First results (preliminary)
- Physics prospects
- Summary

- Dark Matter (DM) puzzle: What makes up most of the Universe's mass?
- LHC Run I: no DM candidates so far. LHC Run II: focus on searching for "heavy" new physics.
- Various models for DM motivate "light" new physics that could be observed in lower energy experiments.

One possibility is dark sector of SM singlet fields, coupled to ordinary matter by gravity, and possibly by other very weak forces. Searches for such dark forces and their mediators provide an additional way to solve the DM problem.

Growing activities of high intensity/sensitivity experiments at sub-GeV scale, e.g. many in Jlab, SHIP at CERN,

The A

Okun, Holdom'86 ..

- extra (broken) U(1)', new massive boson A' (dark photon)
- $\Delta L = \epsilon F^{\mu\nu}A'_{\mu\nu}$ kinetic γ -A' mixing, ϵ coupling strength
- natural coupling $\epsilon \sim \! 10^{\text{-4}} \, \text{--} \, 10^{\text{-3}}$
- A´ could be light: e.g. M $_{A^{'}} \sim \epsilon \ ^{1/2} \ M_{Z}$
- new phenomena: γ-A´oscillations, LSW effect,... or A´decays:
- i) A´ \rightarrow e+e-, $\mu^+\mu^-$, hadrons,...
- ii) $A' \rightarrow$ invisible if $M_{A'} > M_{DM}$ and $\alpha_{DM} >> \epsilon$. Can explain: $(g-2)_{\mu}$, hint on 17 MeV A', astrophys. observations, ...

Large literature, many new theoretical and experimental results

The P348 Collaboration, timeline

Reasearch program

Searches for sub-GeV Z^{$\$}, NHL,... coupled to e, μ , q, by using New method: active beam dump combined with missing-energy technique.

PREPARED FOR SUBMISSION TO SPSC

Proposal for an Experiment to Search for Light Dark Matter at the SPS

S. Andreas^{a,b}, S.V. Donskov^c, P. Crivelli^d, A. Gardikiotis^e, S.N. Gninenko^{f1},
N.A. Golubev^f, F.F. Guber^f, A.P. Ivashkin^f, M.M. Kirsanov^f, N.V. Krasnikov^f,
V.A. Matveev^{f,g}, Yu.V. Mikhailov^c, Yu.V. Musienko^e, V.A. Polyakov^e, A. Ringwald^a,
A. Rubbia^d, V.D. Samoylenko^c, Y.K. Semertzidis^h, K. Zioutas^e

- ^a Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Notkestrasse 85, Germany ^bInstitut d'Astrophysique de Paris IAP, 75014 Paris, France
- ^c State Research Center of the Russian Federation, Institute for High Energy Physics, 142281 Protvino, Russia
- ^dETH Zurich, Institute for Particle Physics, CH-8093 Zurich, Switzerland
- ^ePhysics Department, University of Patras, Patras, Greece
- ^fInstitute for Nuclear Research, Moscow 117312, Russia
- ^g Joint Institute for Nuclear Research, 141980 Dubna, Russia
- ^hCenter for Axion and Precision Physics, IBS, Physics Dept., KAIST, Daejeon, Republic of Korea

Proposal to search for the $A' \rightarrow e+e-and A' \rightarrow inv decays$

December 6, 2013

Dec'13 – proposal to SPSC Apr'14 – recommen.for tests Apr.'14 – March'15 - design, production, delivery at CERN March -Sept'15 – assembly, installation, commisioning Oct'15 – 2 w test run Jan'16 – recommended to RB for approval as a SPS experiment March'16 - final approval? if yes, P348 -> NA64. July, October'16 - 2 beam runs

Currently ~30 members from Chile, Greece, Germany, Russia, South Korea, Switzerland.

Search for A´-> invisible decay

Test Beams at CERN

Test Beams at CERN

Michael Hauschild, LCWS04, Paris, 22-Apr-2004, page 1

SPS Layout

Test Beams at CERN

Michael Hauschild, LCWS04, Paris, 22-Apr-2004, page 6

Direct Search for the A´->invisible decay at CERN SPS^{8/35}

3 main components :

- clean, mono-energ. 100 GeV e- beam
- e- tagging system: MM tracker + SR
- 4π fully hermetic ECAL+ HCAL

Signature:

- in: 100 GeV e- track
- out: < 50 GeV e-m shower in ECAL
- no energy in the Veto and HCAL
- Sensitivity ~ ϵ^2

H4 beamline

- e- , I_{max} at ~ 50 GeV, Now tuned to ~100 GeV
- for 3–4 10^{12} pot/spill, $I_{max} \sim 10^{6} e^{-}$ /spill
- duty cycle is ~ 0.25
- ~10¹¹ e⁻ /month additional tunning by a factor 2–3 ?
- beam spot ~ cm^2
- hadron admixture < 1 %

Tagging of e-`s with SR photons

S.N. Gninenko(INR) – CERN, Feb. 5, 2016 – Search for dark sector physics

Signature for eZ->eZA'

S.N. Gninenko(INR) – CERN, Feb. 5, 2016 – Search for dark sector physics

ECAL response to eZ->eZA' (Geant4+A'emission)

S.N. Gninenko(INR)^{mm} CERN, Feb. 5, 2016 – Search for dark sector physics

13/35

HCAL hermeticity

Summary of background sources for A⁻-> invisible ^{15/24}

Source	Expected level	Comment
Beam contamination		
$-\pi$, p, μ reactions and punchthroughs, - e ⁻ low energy tail due to	< 10 ⁻¹³ -10 ⁻¹²	Impurity < 1% high precision MM
bremss., π , μ decays in flight,	< 10 ⁻¹²	tracker + e ⁻ SR photon tag
Detector		
ECAL+HCAL energy resolution, hermeticity: holes, dead materials, cracks	<10 ⁻¹³	Full upstream coverage
Physical		
-hadron electroproduction, e.g. e ⁻ A->ne ⁻ A*, n punchthrough;	< 10 ⁻¹³	~10 mb x nonherm. WI σ estimated.
- WI process: $e^{-}Z -> e^{-}Z \nu \nu$	< 10 ⁻¹³	textbook process, first observation?
Total (conservative)	< 10 ⁻¹²	

S.N. Gninenko(INR) – SPSC Open Session – CERN, January 14, 2014

Exclusion plots

17/35

Test Run 2015

The P348 detector

S.N. Gninenko(INR) – CERN, Feb. 5, 2016 – Search for dark sector physics

The P348 detector

BGOs, Micromegas, straws, hodoscopes, ...^{20/35}

BGO SR array

Micromegas

Straw tubes

Shashlik ECAL

- Matrix of 6x6 cells, PS+ECAL
- Cell: Pb-Sc sandwich, 38x38x450 mm³
- WLS fiber readout
- (1.5mm Pb+1.5mm Sc)x150 layers
- Hermetic, 40 X₀, no leak to HCAL
- fibers are inserted in a spiral
- Uniform, no cracks, holes
- Energy resolution~9% E(GeV)^{-0.5}
- Spatial resolution: 0.5- a few mm
- e/π rejection < 10^{-3}
- lateral and longitudinal segmentation

HCAL modules

Single HCAL module :

- Fe-Sc sandwich, 60x60x150 cm³
- Matrix 3x3 cells
- WLS fiber readout
- (25mm Fe + 4mm Sc) x 48 layers
- Hermetic, $\sim 7\lambda$
- Uniform, no cracks, holes
- Energy resolution ~ 60% E(GeV)^{-0.5}
- Full HCAL: 4 modules, ~15 tons

HCAL PED, muons

S.N. Gninenko(INR) – CERN, Feb. 5, 2016 – Search for dark sector physics

First look, B-field off.

Performance of the SR tagging system

S.N. Gninenko(INR) – CERN, Feb. 5, 2016 – Search for dark sector physics

25/35

A' signal in the $(E_{HCAL}; E_{ECAL})$ plane

S.N. Gninenko(INR) – CERN, Feb. 5, 2016 – Search for dark sector physics

A' signal in the $(E_{HCAL}; E_{ECAL})$ plane

Conversion of bremss. γ ->e^+e^- in ~200 μm MM2 inside the magnet

SR tag is triggered by either SR γ from 50 GeV e⁻, or by low energy bremss. γ /knock–on e⁻.

MM tracker: tail background rejection

Physics prospects and plans

Physics prospects

Process	New Physics	Sensitivity
1. $e^{-}Z \to e^{-}Z + E_{miss}$		
 ♦ A´-> e+e- ♦ A´-> invisible ♦ alps ♦ mQ 	Dark photons, Hidden sectors, (g-2) _µ new particles, milli-q	10 ⁻⁴ <ε<10 ⁻⁵ M _{A´} ~ sub-GeV e´<10 ⁻⁵ -10 ⁻⁷
2. μ^{-} Z-> μ^{-} Z+ E_{miss}		
$ \begin{array}{c} \diamond \ Z_{\mu} \rightarrow \nu \nu , \ \mu^{+} \mu^{-} \\ \diamond \ \mu \rightarrow \tau \end{array} $	$(g-2)_{\mu}$, gauged $L_{\mu}-L_{\tau}$, L-phobic boson Z_{μ} , LFV	α _μ <10 ⁻¹¹ -10 ⁻⁹ <10 ⁻⁹ -10 ⁻⁸ /μ
3. <i>π</i> (<i>K</i>) <i>p</i> -> <i>M</i> ⁰ <i>n</i> -> <i>E</i> _{miss}		
$ \begin{array}{l} \diamond \ K_L -> \ invisible \\ \diamond \ K_S -> \ invisible \\ \diamond \ \pi^0, \ \eta, \eta -> \ invisible \end{array} $	Bell-Steinberger Unitarity, CP, CPT , NHL, 2HDM,	~ 10 ⁻⁵ Br < 10 ⁻⁸ < 10 ⁻⁸ -10 ⁻⁷
4. <i>pA -> X+ E_{miss}</i>		
♦ leptophobic X +h	~ GeV DM	<10 ⁻⁷ -10 ⁻⁸ /p

Search for the A´->e+e⁻ decay

Summary of background sources for A'-> e+e-

Source	Expected level	Comment
Beam contamination		
- π , μ reactions, e.g. π A-> π^{0} n+X, -accidentals: $\pi \pi$, $\mu \mu$, decays, e-n pairs,	< 10 ⁻¹² < 10 ⁻¹³	Impurity < 1% Leading n cross sect. ISR data
Detector		
 - e,γ punchthrough, - ECAL thickness, dead zones, leaks 	< 10 ⁻¹³	Full upstream coverage
Physical		
hadron electroproduction: - eA->neA*, n -> ECAL2, - eA-> e+ π +X, π ->e ν	< 10 ⁻¹³	high precision MM tracker + e ⁻ SR photon tag
Total	< 10 ⁻¹²	

New leptophobic (muonic) Z_{μ} from gauged $L_{\mu}-L_{\tau}$

33/35

S.N. Gninenko(INR) – CERN, Feb. 5, 2016 – Search for dark sector physics

The conceptual idea of P348 is to search for dark sector physics in missing-energy events with an active beam dump experiment.

The test run 2015:

The capability of such approach and background-free operation of the P348 detector have been demonstrated for the first time.

The run 2016:

The further increase in efficiency and sensitivity over 2015 results is expected due to

i) the ability of a high efficiency tagging of initial state,

ii) precise measurement of the incoming electron momentum,

iil) and thus, rejection of all known backgrounds.

Runs >2016 :

Further increases in efficiency and other improvements are in development, including increased beam rate.

These results expand the reach of P348.